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ABSTRACT

The Viterbi decoding algorithm yields minimum probability of
error when applied to a memoryless channel provided that all input sequences
are equally likely. In this report, the algorithm was generalized for
application to channels with finite memory and it was shown that the
generalized algorithm is also maximum-lklho eoig twsas
shown that the generalized Viterbi algorithm on a simple memory channel
performs better than the original Viterbi algorithm with the same decoding
complexity.

The M-state Markov model was reviewed in this report. The
* process of identifying the parameters of the M-state model from the
Scoefficients Ai and Ai(n 4 ,n4+) of the gap model was determined to be

more complicated than-wa4 a~tfcipated. As an alternative, the simple
partitioned Markov model was examined to determine the effect of the
second order statistics, namely the interdependence of the gaps, on the
error burst distribution. An alternative definition of the burst was
adopted to speed up this investigation. The difference or similarity
between these two definitions will be determined,
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SECTION 1

SUMMARY

The Viterbi decoding algorithm yields minimum probability of
error when applied to a memoryless channel provided that all input sequences
are equally likely. In this report, the algorithm was generalized for applica-
tion to channels with finite memory and it was shown that the generalized
algorithm is also maximum-likelihood decoding. It was also shown that the
generalized Viterbi algorithm on a simple memory channel performs better
than the original Viterbi algorithm with the same decoding complexity.

The M-state Markov model was reviewed in this report. The
process of identifying the parameters of the M-state model from the
coefficients Ai and A (n4 ,n+ 1 ) of the gap model was determined to be
more complicated than waS a~ticipated. As an alternative, the simple
partitioned Markov model was examined to determine the effect of the
second order statistics, namely the interdependence of the gaps, on the
error burst distribution. An alternative definition of the burst was
adopted to speed up this investigation. The difference or similarity
between these two definitions will be determined.
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SECTION 2

VITERBI DECODING ALGORITHM

2.1. INTRODUCTION
In 1955 Elias [1] introduced a new class of codes, called con-

volutional codes (sometimes called recurrent codes), which has become an
important alternative to the block coding scheme. Unlike the block coding
scheme which divides a string of information digits into blocks of k digits
each and encodes these blocks into blocks of codewords of n digits each,
the convolutional coding scheme takes a string of information digits of
arbitrary length (can be semi-infinite) and encodes it into a single string
of coded digits. More on the structure of the convolutional code will be
discussed in the next section.

On a memoryless channel, there are three different procedures
for decoding convolutional codes, viz. threshold decoding, sequential
decoding, and Viterbi (maximum-likelihood) decoding. Sequential decoding
was first introduced in 1957 by Wozencraft [2), It can be applied to any
convolutional code, however the complexity of its decoding computations
is not iixed and can result in long delays in decoding. Threshold decoding
was introduced by Massey [3] in 1963. It is a sub-optimum decoding procedure
and its applicability is dependent on the individual code. In 1967, making
use of the fact that an information digit can affect the coded digits in
ooly a finite number of subsequent time periods, Viterbi proposed a new
decc•.ing algorithm [4) for decoding any convolutional code in the presence
of noise due to a memoryless channel. His algorithm is a i'elcome alterna-
tive to the threshold decoding and sequential decoding algorithms. Unlike
sequential decoding, the computational complexity for decoding a digit in
th6 Viterbi algorithm is fixed. Furthermore it was proved later [5) that
the Viterbi algorithm is actually a maximum likelihood decoding procedure.

*-"Practical decoders based on the Viterbi algorithti have actually been built
and tested [6,71.

The Viterbi algorithm is a powerful procedure for decoding any
convolutional code on a memoryloss channel. For such channels the decoding
procedure yields the minimum probability of error provided all input
sequences are equally likely and is therefore optimum in this sense.

* Unfortunately, except for the space channel, most of the real ciannels
on earth are not memoryless channels. They generally exhibit a certvdn
degree of memory in their noise distributions and the errors tend to
cluater together in bursts. Thus, for such real channels, it would be
inappropraite to use the Viterbi algorithm whlich is designed for memory-
less channels only. Using the algorithm in its present form would result
in sub-optimum performance. In order to achieve optimum performancp, the
Viterbi maximum-likelihood decoding algorithm for the memoryless channel
must be modified or generalized so that it will still he a maximum-likeli-

hood decoding algorithm when used on such channels with memory.
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2.2. PRELIMINARIES
The necessary basic understanding of convolutional codes will be

presented in this section. For further detail refer to (8]. For ease of
discussion, binary convolutional codes of rate 1/n will be considered here.
Generalization to nonbinary codes and any other rate is straightforward. A
rate 1/n convolutional code encoder is a linear finite-state machine
consisting of a (k-l)-stage shift register and n modulo-2 adders which
give the coded output, where K-n is the constraint length of the code. An
example with K-3 and n-2 is shown in Fig. 1.

110...

Commuter !

111000-

Code Sequence Oata Sequence

100' •.•...

Fig. 1. A rate e~ ncoder

During encoding the input data is shifted into the register one
bit at a tLie, causing the encoder to instantaneously produce n encoded
digits. This procedure continues until L data symbols are fed into the
shift register. The result is a zode with a tree structuro having L
branching levels. Each branch contains n encoded digits. An example of
the tree structure with L-4 is given in Fig. 2 for the encoder of Fig. 1.
Brauching upwards corresponds to an input of 0 while branching downwards
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corresponds to an input of 1.

From Fig. 1 we can observe an important property of convolutional
codes; that an input digit can affect the output digits in at most K time
periods. This can also be seen from the fact that the convolutional encoder
is a finite-state machine and the code can hence be represented by a state-
diagram of 2 K-1 states, the states being the contents of the (K-l)-stage
shift register. The state diagram for the encoder of Fig. I is given in
Fig. 3.

2.3. GENERALIZED VITERBI DECODING ALGORITIMh
In this section the Viterbi decoding algorithm fur the memoryless

channel will be "re-invented" using an approach different from that used by
Viterbi. Viterbi derived his algorithm (41 in an intuitive manner by
observing the structure of the convolutional codes, and then proved that
his algorithm was actually a maximum-likelihood decoding algorithm 15].
Here we shall start with the mathematical expression for maximum-likelihood
decoding and then derive from it the mahematical formulation of the Viterbi
algorithm. Since we start with thle maximun-likelihood decoding and arrive
at the Viterbi decoding algorithm, it is clear that the Viterbi decoding
algorithm is a maximum-likelihood decoding algorithm. Using precisely the
same approach we will then derive a generalized formulation of the Viterbi
algorithm so that it can handle channels with finite memory. A channel
is said to be of finite memory if its probability of a bit in error is
dependent on a finite number of previous bits. In particular a channel
is said to have meuory m it

Pr(e le ei-2....) Pc IQ 0 We

Let •la. be tile input data sequence to a (K-l)-stage shift
oegititer encodei 0ith ii outputs. The encoded sequence will then be a stringof L11 symbols. Lot X ( x .x) be tile n-symbol output of the encoder

whlen at is fed into tie efider. and yet V - (y Iy ... y ) bey tile corres-•ponding received 11 .1o cod n_-d. Tile eirors WSA by I'le channlel f orm .

E (Y + x +l X + X ÷ ) ecauae of the
'.itiýitre of the encoder acti ai cal effixt only I Xi+l...i+

Given a received sequence Y V 2...YL maximum-likelihood decoding
to determine tile data sequence Jla ... aL for which the likeli-

h4od function P(Yi¥ 2 ... ¥Ljala2 ... a.) is tile geateat among all possible

data sequenceS, In other woirds, the followiNr opetation must be performed:

•; M.1% P(¥1" "Yhlal"'L (2)•
alL L I ... Ad

Since knowittn a 1 , .,L iS equivalent to knowing X 1 .. XL' (2) is et"'ivalent
to
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Max P(El...EL) (3)
a 1 ... L

where Ei Yi + Xi, i.e., determining the most likely error pattern for

the channel being used. Using the identity

P(AB) - P(A)P(BIA) (4)

(2) can be written as

SMaxal .. L PY .. K ao°L)P(YK+Ill,.OLYI... YK)P(YK+2al.LI.Y+).

P(YLalo..aL,Ylo..YL_2)P(YLIal...aL,Yl.o.YL-1) (5)

Let us first consider a memoryless channel. For such a channel
the probability of receiving Yi depends only on the Xi that was sent, which
in turn is a function of only a ik+lO..ai, i.e.,

P(Yilal...aL,Yl.o.Yil_) = P(YilaiK+l...ai) (6)

Substituting (6) into (5) we can rewrite (5) as:

Max P(Y 1 o.oYK K.al...o aK)P(YK+I a2 o. .aK+l)...P(YL-l~aL-KI*aL_ l)
a 1",a L

P(YLaLK+l.o.aL)

In (7) we note the fact that the second and higher terms are independent
"of a,, and the third and higher terms are independent of a2 , etc. We
can regroup (7) into the foi:

__Max P(YLIaL K+l.OaL) {aMax P(YLIaL.K°.aL_){
L L-+ aL 11-K

" .{Ma P(YK+lIa 2 o..aK+l) { Max P(YI...YKIal...aK))....)} (8)

In (8) each maximization procedure is over a single variable except
the first one, which is over K-1 variables a8  ,,+.a . If during encoding
we agree to add K-1 zeros to the end of the kaa sequence a,... aL, (K-1)n
more digits will be transmi.ted and received, namely XL+l...XL+Kl and

Y YL+ .YL+Kl respectively. This additional sequence does not contain any

new information but will be seen shortly to be very helpful in simplifying
the decoring procedure. The maximum-likelihood decoding procedure of (2)
would now be

8



Max P(YlY2" YL+K lal..."aL 0. (9).. aI•.1a L K-i

The K-i zeros in (9) may be omitted since they are known quantities.
Following the same procedure as before, an expression similar to (8)
can be derived from (9) except that YL is now replaced by Y YL+K-'S~i.e.,

u.+MaxLL K(Y....a)I lax P(YLIIaL.K...aLK){.-.aLK L _IaLl ... aLK

Max P(Y la a P(...Ykal....aK)}}...}} a

a K+11 2# K+l{a 1J. K)}x} (10)21

Using (4) and (6) P(YL...YL+KlIaLI,+I...aL) can again be broken up into
K terms:

*i• P(YL." L YL+K-I aL-K+l""'eL) - P(YLIaL-K+"."aL)P(YL+IaL-K+ 2 ""'aL)."'

.. P(YL+K-21 _LaL)P(YL+KI[aL) (11)

Noting once again that the second and higher terms of (11) are independent
of eL-K+l etc., the maximization process over aLK+I...aL in (10) can
once again be broken into K maximizations each over a single variable:

MxP Max (L .2aL.a) .
Max P(YL+K.liaL){ a P(YL+K 2i-LlaL){
aL

a 1 P(YLIaLK+...aL){ aMax P(YL.ISaL.K...aL.l)(
LK+1 eL-K

Max P(YK+lIa 2 ... aK+L){aMax P(Yl'."YKlalossaK)})...) (12)
21

Equation 12 is the mathematical expression of a maxlmum-likblihood
decoding procedure for the convolutional code over a memoryless channel. Not

' ]too surprisin6_y it is the same as the Viterbi decoding algorithm. The
decoding procedure as represented by (12) may be interpreted in the followinS
way:

Step- Compute the likelihood functions P(Yl."'YKIal...aK) for all

2 possible paths al...aK. For each of the 2K-1 paths a2 ... aK choose

that al' which gives the greatest likelihood function and call it the
survivor Alpa2...aK) - a1

9
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Step 2: Compute the likelihood functions P(YK+lIa 2 ... aK+I) and

multiply by their corresponding previous likelihood functions
P(I"...YKIAl(a 2 ""aK)a 2 ... aK) to form the new likelihood function

P(Yr .. YK+IIAI(a 2 ... aK)a 2 ... aK+l) for all 2 possible paths

a..aK+l. For each path a 3 ... aK+I choose that a 2 ' which gives

the greatest likelihood function and call the sequence Al(a2a
the survivor A2(a3...aK+1).

Step 3 -- Step L-K1l: Proceed in a similar manner as in Step 2.
In particular at the i-th steV. 3 < i < L-K+l, compute the 2

likelihood functions P(Yi+Kl Tai...ai+Kl) and multiply by their

corresponding previous likelihood functions P(Yl.."Yi+K2I

Ai-l(ai...ai+K_2 )ai...ai+K_2 ) to form the new likelihood function

P(Yl...Yi+K_llAi_(ai...ai+K- 2 ) ai...ai+KI) for all possible

paths ai...ai+Kl. For each path ai+l ... ai+K1 choose that ai'

which gives the greatest likelihood function and call the sequence
Ai1 l(ai'ai+l...ai+K_2)ai the survivor Ai(ai+I...ai+KI).
Step L-K+2 -- Step L-i: Proceed in a similar manner as before,

except that the length of the path is shortened by one at the
end of each step. *n particular at the i-th step, L-K+2 < i < L-l,

compute the 2L+l-i likelihood functions for all possible paths

a ... a For each path ai+l*..aL choose that ai' which gives

the greatest likelihood function, and call the sequence
A i1(a iI...aL )ai the survivor Aa(ai+l..L).

Step L: Compute the 2 likelihood functions for a, . 0 and aL 1.
Choose that a1 ' which gives the greater likelihood function. The
survwvor sequence AL l(aL')aL' is the maximumrlikelihood decoded

From the above procedure it can be seen that at each step of the
decoding, except the final K-1 steps, maximization has to be done for 2K-I

dif ferent paths. Since there are also 2K-1 states in the state-diagram of
the code, the state-diagram can be utied as a system diagram for the decoding
algorithm. At the end of each decoding step each state (path) remembers
i.ts survivor and corresponding likelihood function. During the next decoding
period all the possible stato transitions are made and the corresponding new

likel.ihood functions computed. Then at each state the new likelihood
functions are compared and the new survivor is chosen, and the system is
reody for antother decoding period. During the final K-I steps the same
thing happens, only that now a decreasing numbar of states would be involved
and an increasing na~her of states would become idle.

10



We have seen so far that the Viterbi decoding algorithm for the

nmemoryless channel can be directly derived from the general maximum-likeli-
hood decoding formulation (2) by making use of properties (6) of the
memoryless channel. Using precisely the same approach, we shall now show
that the Viterbi decoding algorithm can easily be generalized to handle
channels with finite memory.

Let us consider a channel with finite memory m. Let J be the
smallest integer grdater than or equal to m/n. For such a channel, the
probability of receiving the initial sequence Y' ".Y3 will not only depend
on al...a., but also on the error state e i ... eleO of the channel before

the first digit y1 1 is received. If we agree to transmit m zeros just
before we trat.smil-the first coded digit x11, the received digits corres-
por ing co these m zeros would tell us the error state e-l...e 0 of the
channel. Then the maximum-likelihood decoding formulation of (2) can be
slightly modified to

*Ml...aL P(¥'" L als#"aL, e-m+1 " .eo) (15)

Firthermore if during encoding, we agree to add K+J-l zeros m' the end
of the data sequenca Rl",.aL (K+J-1)n more digits will be transmitted
and received, namely and YL+I'"Y respectively.

L+1 . *"K+- L+K+J-l epciey
* Just as in the memoryless channel case, this additional sequence does

not contain any new Information b%,t will also be seen to simplify the
decoding procedure. The mpximum-'ikelihood decoding procedure-of (15)

S. would now be
S~~Ma-! P(¥1 "¥1.+K+j~ljlal'" aL, -~' •) (16)

Applying identity (4) to (16) as befor-, (16) can be written as

Max P+ ( JO I '00J IX Y .+J'
V L

• e l ... O)""P(L• +J-2 a"" aL#¥1'" "YL+K÷J-3 'e-m+l" "'co)t

(- (17)

For the channel with memnr) m, the probability of receiving Y, i > J
will depend not only on X which gives the error pattern E Y + X I
but also on the previous Error sequence Y Y +i

The sequence X .j...X as a whole is a function of a

SI 4..a. Thus for this channel

AI



P(Yilal...aL,Yl...Yi le m+1 ... e0 ) = P(YiaiJK+l...aiYiYJ...Yil) (18)

The likelihood function on the right-hand side of (18) is easy to compute
since

P (Yi Iai.J_K+1 ... ai,Yij.J"" Yi-i)

-P(Y' jXi_j...X iYi~j...Yi~l)

- P(Yi~ + Xlj (Yi-.j" -Yi-) + (Xi-j" 1Xi-1))

= P(EiIEij...Eil). (19)

which can be computed from the channel model parameters. Substituting
(18) into (17) we can rewrite (17) as

Max P(Yl".YK+J .al""aK+J"e-m+l"""eO)P(YK+J+ 'a2 '"'aK+J+l'YK+l... YK+J)

a1 ... aL

* ..P(YL+K+J-2 1aL-laL'YL+K-1" YL+K+J-3)P(YL+K+J- 11aL,

YL+K- YL+K+J-2 (20)

Once again we note the fact that the second and higher terms of (20) are
independent of a and the third and higher terms are independent of a2,
etc., we can regioup (20) into the form.

Max P(YL+K+J-ISaLYL+K-".'YL+K+J- 2 )(ax1 P(YL+K+J-2 1aL-laL'-
aL_

¥LY -"YL÷-3 X "" Max .(

~L+K-2*'* ** Max P(YK+J+11a2'aK+J+1'YK+1*'.YK+J)

a j .Max P(Y .YK+j il...aK+ ,e~m+l. e)I...) (21)

Equation (21) is the mathematical expression of a maximum-likeli-
* hood decoding procedure for the convolutional code over a channel with finite

memo ry ui. We shall call it the generalized Viterbi decoding algorithm. The
decoding procedure as represented by (21) may be tnterpreted in the following
wayt

Step : Compute the likelihood functions P(YI...YK+jjal.,.aK+V

a jt..eO for all 2 KJ possible paths al...aK+J. For each of

12



the 2 K+J- paths a2 .. .aK+J choose that aI' which gives the
greatest likelihood function and call it the survivor
Al(a 2 ... aK+J) m al'.

Step 2: Compute the likelihood function P(YK+J+lIa 2 ... aK+J+I,

¥K+l'" "YK+J) and multiply by their corresponding previous likeli-
hood functions P(YI.."YK+JAI(a 2 ".'aK+j)a2 ""aK+J'e-m+I"'.e0) to

form the new likelihood function P(Y1.. 'YK+J+lIAl(a 2 ".'"aK+j)a2 ...
* K+J

aK+j+l,,_m+...e0) for all 2 possible paths a 2..aK+J+I.

For each path a3 .. .aK+J+l choose that a2 ' which gives the greatest
likelihood function and call the sequence Al(a 2

t a3 ... aK+J)a 2 ' the
survivor A2 (a3 ... aK+J+l).

Step 3 -- Step L-K-J+I: Proceed in a similar manner as in
Step 2. In particular at the i-th step, 3 < i < L-K-J+1, compute
the 2K likelihood functions P(Yi+K+J 1 a ..- ai+K+JIai+K 1..

* i+K+J-2) and multiply by the corresponding previous likelihood
Sfunctions P(YI ""YiK+J-2 Ai-(ai"""ai+K+J- 2 )ai" "a±i+K+Jo2 'e-m-" "O)

to form the new likelihood function P(YI"'Yi+K+J-1lAi-l(ai'"i+K+J-2)
ai ... a l )... for all possible paths ai a i+K+Je For

each path ah+1. ,ai +K+j-1 choose that ai' which gives the greatest

likelihood function and call the sequence A (aiai+l...a+ )a
the survivor A (a

Step L-KJ±Z --- Step L-1: Proceed in a similar manner as before,
except that the length of the path is shortened by one at the and
of each saep. In particular, at the i-th step, L-K-J+2SL,.•L-l, com-

pute the 2L+l'- likelihood functions for all possible paths a&...SL.
For each path a +l ..aL choose that at' which gives the gra•aest

likelihood function, and call the sequence Al_(ai'...aL)ai' the
survivor Ai(aL+l.e'"L)"

Step L: Compute the 2 likelihood function for aL * 0 and 1.
Choose that aT' which gives the greatest likelihood functio The
survivor sequ nce AL.I(aL')aL' is the maximum-likelihood decoded
sequence.

From the above it can easily be seen that the decoding procedure as
represented (21) is indeed a generalized Viterbi decoding algorithm since it
contains the Viterbi algorithm as a special case when the memory of the channel

j m is equal to zero. For the channel with memory, it is soen that at each step
of the decoding, except the final K+J-l steps, maximization has to be done for

13



2K+J-I different paths. Since there are only 2K states in the st&te-diagram

of the code, the state-diagram cannot be used as a system diagram for the decoding
algorithm as in the memoryless channel case. However for any 2K'l-states state-
diagram it is possible for one to expand it into a 2K+J l-states state-diagram.
The easiest way to see this is to look at the encoder. One can add J stages of
dummy shift register to the original K-i stages of shift register in the encoder
and then consider it as a K+J-1 states finite-state machine. This "new" encoder
can thus now be represented by a state-diagram with 2K+JI states. An example
of such a procedure for the encoder of Fig. 1 with J a 1 is as shown in Fig. 4.
The expanded state-diagram obtained by the procedure just described may now be
used as a system diagram for the generalized Viterbi algorithm in exactly the
same manner as in the memoryless channel case. Thus the complexity of a
generalized Viterbi decoder with parameters K and J is about the same as that
of a Viterbi decoder for the memoryless channel with parameters K' - K+J.

2.4 EXAMPLE
As a very primitive example of comparing the performance of the

generalized Viterbi decoder with that of a Viterbi decoder for the memoryless
channel of the same complexity, let us use the code generated by the K - 3
encoder of Fig. I for the memoryless Viterbi decoder and use the code generated
by the K - 2 encoder of Fig. 5 for the generalized Viterbi decoder. Assume
L - 3 in both cases. Furthermore let us choose a very simple channel model
representing a channel with finite memory m w 2. Such a model is cowpletely
specified by the following set of conditional probabilities:

P(lJoo) -0
P(ll0) 0.5 (22)
P(1l1O) 0.5

P(I 111) 0.5

where a 1 indicates a channel error and a 0 indicates no error. Since
cm - n a 2, J w 1 for the generalized Viterbi decoder and the two decoders
have the same degree of complexity with regard to hardware configuration and
number of states.

Lot us assume that the channel is error-free when the actual trans-
mission begins, i.e., e0 ea c 0. Since both of the codes are linear codes,
we can form a standard array lor each of the codes. For the K - 3 code, choose
the vector with the minimum weight in each cosct as the coasct leader. These
would be the correctable error patterns chosen by the memorylesa Viterbi
decoder. For the K - 2 code choose the vector with the highest probability,
given e0 - e o a 0, in each coset as its coset leader. These would be the.correctible ;iror patterns chosen by the generalized Viterbi decoder,

If no coding is used at all in the channel, the probability of
error P is

,- - P(oo... o00)

.09.955 X1O0
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If the K = 3 code is used in conjunction with the memoryless Viterbi decoder,
the probability of error P is

m

P = 1 - P(O...o0oo) - r P(EJOO)

m ES

= 3.549 X10

where S is the set of all correctable error patterns. For the K - 2 code
and the generalized Viterbi decoder, the probability of error PE * 2.583 XIO

E
Thus the generalized Viterbi decoder slightly outperforms the memoryless channel
Viterbi decoder.

2.5. CONCLUDING REMARKS
In this report we have developed a generalized version of the Viterbi

decoding algorithm. This generalized algorithm can be used to perform maximum-
likelihood decoding on any channel with finite-memory and is thus an optimum
decoding algorithm for such channels. It is pointed out that the complexity
of a generalized Viterbi decoder with parameters K and J is about the same as
that of a Viterbi decoder for the memoryless channel with parameter Kt - K+J.
In a simple example we have seen that the generalized Viterbi algorithm indeed
outperforms the memoryless Viterbi algorithm when the complexities of the two
decoders are about the same. Although the same result has not yet been proved
to be true for all channels with finite memory and all possible codes, it shows
at the very least, that in certain cases the generalized Viterbi decoding
algorithm is superior to the memoryless Viterbi algorithm whin the complexity
of each decoder is kept the same. Furthermore, if it is the complexity of the
encoder rather than the decoder that is kept the same, then the generalized
Viterbi algorithm which performs maximum-likelihood decoding will definitely
be superior. Thus, in those systems where the cost of the encoder is the main
concern and the cost of the decoder is of little concern, the generalized
Viterbi algorithm should definitely be used. Just one such example is when
there is a large number of sources (thus encoders) transmitting data to a
data processing center which uses a general purpose computer as decoder and
thus the cost of implementing either decoding algorithm is the same.

I
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SECTION 3

MARKOV CHAIN MODEL

3.1. A REVIEW OF THE M-STATE MARKOV MODEL
The M-state Markov model is described by the transition probability

matrix P - (p" ] and a set of probabilities of error in each state h' - 1 - h.
M x M parameters are required to determine the model completely. It has been•
contemplated that a set of the coefficients Ai and Ai(n ,n4 +i) of the unconditional
"and conditional gap distributions can be used to identily thIse parameters.
However, a close examination revealed that the process of identification is
considerably more complicated than it has been anticipated.

The elements of the matrix D are defined 13 by

D (1)

D can be diagonalized as follows:

1D G G (2)

where g is a diagonal matrix whose elements ot are the eigenvalues of the
matrix D. G is a non-singular matrix whose columns are eignevectors cor-
responding to gi. Since the eigenvectors are unique up to a scalar, they
can be chosen such that the sum of the colu•ns of G is equal to unity, i.e.

H
• ;l"1 1#2000#9H. (3)

It has bean shown 123 that

"P(m) a Aiai (4)
i-I

H
SP(w/u)u, E A(n)a'm (5)

P = /n A•( nn•+) H (6)
P(•j •11 n+lJ i.. j +1 01,

i-

It has also been shown [3] that

P(m) Jet



P(m/n) n T T n+j (8)
-Te x D e

and

u

JUUJ

P(m/n < n < uj+11) n n +1 (9)

Consider the case of M - 3, by definition

P(m)- xTDme xTGamG -e

G G1G 3 \ 01, 0 0 G ~1 G ~G(-)G
111 12 13

.7 .
G2  G2 2G2 3  )2. 21 22 23

G G3 0 001 G G ~1 G

33) 31. 32 33

Too + 1 G ) + G, (- 1 G11 +YIG 2 + x33)

( (G 21(-1) + G 22 (1 3 + G3 )(X. + G + x3(31 2

+( G2 c G22332 ~

+ (G.31 + G2 +3 33 (xp.3 + xG:2 3 + 3G333)

nowI

-P---ht- .- Pti (11)
i-i

where Pi is the statioaaty probabLity of i-th state. The Pi satisfy the

20



following relations:

1 llPl2pl3  1

P2 p2iP22P23  P2  (2

1p3lP 2p3 3  ( 3

and

p1 + P2 + P3  1(13)

The stationatry probabilities pi can be exjressed in terms of the transition
probabilities p14 as follows:

- (1-P2 2 ) (1-P 3 3 ' + P23p32 -

Pl (-2~ (- 3 3) +P 2 3 P32 + 21 (1- 3 3) + p2.3P3 1 +P 3 1 (1-p2 2 ) + P32P2 1 )

- ~~~~(1-p1 1 )(1-P 3 3 + 1 p 1 (5

(l.3(1 p 2 (1-p1 1)(1-P 22) + p 2 3  1 p 1  2 ~ 3 ( 6
~12P21 + Pl("'2)+ 1.2+P3(-l +2P3

The probability transition mitrix P can be expressed in terms o f
D) and inturd, expressed in terms of G and U-1.

or explicitly

Pll, 1 2 P1 3  ~ G 1~3  ~l ~ 1 1  G1 2  1 3  0

v221PU23  2 1G.12 G2 3  O 0 62 ~ 21 (1)2 '2 h

fl 3G 3  0 0) (S G3 1
1 G~ (-1 G 0 0 1

33 h3



Carrying out the matrix multiplication, the result is

1 GG (-l) +aGG (-l)+
Pij hF Iil ij + 12 23 (313j

(17)

h 3 (-4)

j k=1

Substituting (17) into (14), (15), and (16), into (11); and into (10), it
is not difficult to realize that the magnitude of complexity is enormous.

3.2. AN ALTEPATIVE APPROACH
The complexity in identifying the parameters of the general Markov

model sterns from the fact that there are too many parameters to be determined.
Some of t'.- parameters could be specified beforehand as 0 or 1 to reduce the
complexity. Several simpler models were discussed in both Quarterly Reports
No. 2 and No. 4. Amoag them the simple partitioned Markov chain model has been
extensively studied [4] [5],[6]. This model is completely determined by 2(M-1)
parameters instead of Mý parameters for the general Markov model, and these
2(M-1) parameters can be uniquely derived from the unconditional gap distribu-
tion which is, sometime, referred to as error free run distribution.

The general Markov model, were it possible to be derived from the
unconditional and conditional gap distributions, would yield the same uncondi-
tional. gap distribution as the simple partitioned Markov chain model. It would
also yield the conditional gap dist.ributions while the simple partitioned
Markov model will not exhibit the interdependence between the gaps because
it has only.a single error state.

Investigation of the effect of these second order statistics,
namely, the interdependence on the error burst dietribution is undetr way.
A computer program has been written to generate error sequences from the
probability transition matrix characterizing the simple pattitioned Markov
model. Burst distributioi, are calculated from three sources: the original
error sequence, the error sequence gaaerated, from the gap model and the error
sequence generated from the simple Markov model. Some preliminary results
have been obtained and are presently under study.

3.3. ERROR BURST
In Quarterly Report No. 4, the error burst is defined (7] as a

sequence of bits starting and ending with an error and separated from
neighboring bursts by at least K error free bits, where K is a parameter.
A second deiinition [6] is instrumental in evaluating some error correcting
codes. It defines the ex :or burst with error density Ao as follows:

(1) A burst begins with an error and ends with an error;

22



(2) The ratio of the number of errors to the total number of
}bits of a burst is larger than or equal to the specif.4ed
density Ao;

(3) If successive inclusion of the next error keeps the error
density above Ao, the burst continues; otherwise the burst
ends;

(4) A burst cannot begin with an error belonging to the previous
burst;

(5) A single error is defined to be a single-error burst with
burst length of one digit.

A computer program has been written to compute the burst distribu-
* tiotn from the error sequence using the second definition. Some preliminary

"resilt on the burst distribution from the original error data is shown in
the following figure.

The two different definitions do not cause appreciable change in
the burst statistics. This can be seen by the following reasoning. The
first definition does not allow a long string of "o" in the burst while
the second defitnition does. Rowever, the probability of these bursts is
small because a long string ;f "o" inside the burst must be preceded by
dense errors.

. 2

I"

,. . -

------------------ *-- .-- . -.
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Fig. 6. Burst distribution
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